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The flow evolution of water in a completely filled rectangular container, impulsively 
rotated from rest to a steady angular speed, is investigated experimentally and 
numerically. The pathlines of the fluid from rest to solid-body rotation primarily 
follow one of two possible configurations that have been described previously in the 
literature. The first, consisting of two cyclones that form following the separation and 
roll-up of the sidewall boundary layers and an anticyclone that forms subsequently, 
results in a pattern on the path to spin-up of cyclonic -anticyclonic-cyclonic vorticity. 
In the second configuration the cyclones migrate into the interior of the container 
and merge, resulting in a pattern on the path to spin-up of anticyclonic-cyclonic-- 
anticyclonic vorticity. The experiments provide a parameterization of the possible 
evolutionary configurations as a function of horizontal and vertical aspect ratios and 
Reynolds numbers. Critical Reynolds numbers for vortex merger are determined 
experimentally. Evolutionary configurations in addition to the primary two are 
observed; in particular symmetry breaking occurs at high Reynolds numbers causing 
complicated patterns of flow evolution. For some flow conditions at high Reynolds 
numbers, more than one evolutionary pattern is observed for the same external 
parameters. The experiments are conducted with a rigid lid showing that a free surface 
is not required for vortex merger. Numerical integrations of the two-dimensional 
Navier-Stokes equations (a situation corresponding to the limiting case of a container 
of infinite depth, where there are no effects from the top and bottom and all 
flow is horizontal) reproduce qualitatively many of the features of the experimental 
observations. in particular the merger events. The numerical results show that neither 
vertical flow due to Ekman boundary layers at the top and bottom nor a free surface 
are necessary for the observed vortex merger. 

1. Introduction 
The spin-up of nearly inviscid fluids in a container that is initially at rest and then 

impulsively rotated at a steady angular velocity has been studied in great detail for 
axisymmetric cylinders (Benton & Clark 1974; Weidman 1976a, h). In an axisymmetric 
cylinder, there are two processes contributing to spin-up : viscous diffusion of angular 
momentum from the sidewall boundary layers and convection of angular momentum 
due to a vertical pumping of fluid into the Ekman boundary layers on the horizontal 
surfaces. Viscous diffusion occurs on a time scale T,. = L'/v , where v is the kinematic 
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viscosity of the fluid and L is a horizontal length scale. Ekman pumping of angular 
momentum occurs much faster, on a time scale TE = (H2/v!2) ' /2  where !2 is the 
final rotation rate and H is the depth of the fluid. Van Heijst (1989) investigated 
the spin-up of fluid in non-axisymmetric containers. The inherent lack of azimuthal 
symmetry introduces an additional mechanism, which can play a dominant role in the 
spin-up process. The new dynamics are due to the separation of the sidewall boundary 
layers, which form free shear layers and subsequently roll up into cyclonic cells on 
a time scale that is fast compared to a rotation period. This is a two-dimensional 
process; hence, it is independent of H .  Van Heijst and co-workers (van Heijst 1989; 
van Heijst, Davies & Davis 1990; van de Konijnenberg et al. 1994) noted this process 
in their experiments and Suh (1994) observed it in his numerical study; nevertheless, 
the nature of the process is not well understood. In particular, there are a number 
of distinct dynamical states that the system can attain during its evolution from rest 
to solid-body rotation. The two most common states are a cyclone-anticyclone- 
cyclone (+ - +)arrangement, observed experimentally by Stewart (1993) and van de 
Konijnenberg et al. (1994), and numerically by van de Konijnenberg et al. (1994) and 
Suh (1994), and an anticyclone-cyclone-anticyclone (- + -) arrangement. The latter 
arrangement results from the merger of the cyclones. It was observed experimentally 
by van Heijst et al. (1990) and Stewart (1993). These two patterns (and more) are 
observed in both the experiments and the two-dimensional computations presented 
here. 

In this paper we present results from a series of experiments in a variety of 
completely filled rectangular containers with varying horizontal and vertical aspect 
ratios in order to investigate the processes and parameters that determine vortex 
evolution during spin-up in rectangular containers. These experiments differ from 
those of van Heijst et al. (1990) and van de Konijnenberg et al. (1994) in that the flow 
evolution is investigated by a systematic exploration of parameter space, consisting 
of Reynolds number and the vertical and horizontal aspect ratios of the container, 
delineating regions of dynamical behaviour. In the present experiments the fluid 
completely filled the container so that there was no air between the fluid and the 
rigid lid, eliminating the effects of free-surface deformations. Van Heijst et al. (1990) 
observed merger in their free-surface experiments but not in their experiments where 
a lid was placed on top of the fluid. Van de Konijnenberg et al. (1994) placed a rigid 
lid on their container, but did not fill it completely, so that they had a deformable 
free-surface. They did not report any merger events. Stewart (1993) considered the 
free-surface case only. In addition, we present computations from the two-dimensional 
Navier-Stokes equations, representing the primary interior flow, which corresponds to 
the limiting case of a container of infinite depth. These differ from the computations 
of Suh (1994) in that we compute to higher Reynolds numbers, where merger takes 
place; Suh (1994) did not report cyclone-cyclone merger events. Further, unlike Suh, 
we do not enforce the .n-rotational symmetry, which is shown to be broken at high 
Reynolds numbers in both our experiments and numerics. Van de Konijnenberg et al. 
(1 994) presented three-dimensional computations for low Reynolds numbers where 
merger does not occur. Van de Konijnenberg (1995) presented three-dimensional 
computations at higher Reynolds numbers for which merger did occur. 

Our main results are the following. 
(a) Vortex merger can be characterized by the Reynolds number and aspect ratios. 

In particular, in experiments with a rigid surface, the cyclone merger occurs at a 
critical Reynolds number that increases with increasing horizontal aspect ratio (for 
a fixed vertical aspect ratio). It varies non-monotonically with increasing vertical 
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aspect ratio at a fixed horizontal aspect ratio. In particular, it decreases sharply 
with increasing vertical aspect ratio while the vertical aspect ratio is less than one, 
then jumps at a ratio of one, and decreases at a lower rate with increasing vertical 
aspect ratios larger than one. In experiments with a free surface, the critical Reynolds 
number and the time for merger are less than those measured using the rigid lid. 

( b )  Vortex merger can occur with either a rigid or free surface as evidenced by 
the experiments. In the numerical computations, which model the two-dimensional 
dynamics in the limiting case of infinite depth, merger events also occur. 

(c) Ekman pumping is not required for vortex merger as evidenced by the compu- 
tations, which do not contain the horizontal boundaries. 

( d )  At high Reynolds numbers, both the experiments and computations show that 
symmetry breaking can occur, causing a variety of vortex patterns and merger events. 

( e )  Different flow evolution patterns can result from slightly different start-up 
conditions. 

An outline of the paper is as follows. The experimental apparatus and procedures 
are discussed in $2. The two-dimensional model and the numerical algorithm for 
its integration are developed in $43 and 4. Symmetries that are inherent in the 
rectangular geometry and turn out to be either kept or broken in the experimental 
and numerical results are pointed out in $5. Section 6 contains the experimental 
observations and discusses them in conjunction with the numerical results. Section 7 
contains a discussion of the cyclone paths in the various configurations to spin up. 
Section 8 summarizes the results. 

2. Experimental apparatus 
The experimental equipment consisted of a turntable and drive, a real-time com- 

puter, photography systems, a number of rectangular containers, and distilled water 
with food colouring. 

The rotating table is a Lintech model MR-308180 that rotates about its centre 
to within 0.05 mm. The rectangular container is centred on the table with a pin to 
within 0.05 mm. The table is level to within 5.8 x 10-6rad. When the drive is powered, 
the table exhibits high-frequency vibrations that vary in frequency and intensity with 
the rotation rate. Stewart (1993) documented the spectra of the free-surface response 
to these vibrations. However, unless otherwise noted, all of the experiments discussed 
herein were conducted in containers with rigid lids, rather than free surfaces. The 
rotating table assembly was mounted on a structural wall of the laboratory to isolate 
it from extraneous laboratory vibrations. 

The computer-generated command signal to the motor drive was varied impulsively 
(a time interval of s )  from a zero voltage to the final voltage in the majority of 
the experiments. To determine if the flow patterns depended on the initial condition, 
experiments were also conducted in which the command signal was ramped linearly 
from zero to a final voltage in a specified time interval. In the discussions of the 
results, all of the experiments had an impulsive start unless otherwise noted. The table 
drive was a DigiPlan Electronic Motion Control brushless d.c. motor with velocity 
feedback. Because the drive had velocity feedback instead of position feedback, it had 
to be checked before each experiment to ensure that a zero voltage from the computer 
provided zero motion. The angular speed of the table was measured with an accuracy 
of k0.005 rad sP1 using either a tachometer or a stopwatch during each experiment. 
The servosystem operates for table speeds less than about 1.8 rad s-' providing an 
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Container L (cm) W (cm) H (cm) 
1 12.7 variable 10.0 
2 10.5 23.9 14.7 
3 16.4 37.4 variable 
4 15.3 34.9 variable 
5 15.3 34.9 10.0 
6 10.5 23.9 10.0 
7 11.0 25.1 variable 

TABLE 1. Dimensions of containers used in results shown in figures 9 and 12 

upper bound on the angular speeds attainable. In all of the experiments herein, the 
table was rotated in the counter-clockwise direction. 

The experiments used a number of containers with rectangular cross-sections; the 
largest horizontal and vertical lengths were about 30 cm and 60 cm . The containers 
were constructed of lucite plates that were joined with methylene chloride. The 
horizontal bottom was machined to be flat; the sidewalls were not. After gluing, the 
long walls exhibited some warping so that the short dimension, L, varied by almost 
1% across the width of the container. This variation in L is of the same order as 
the boundary layer thickness. Two of the containers were equipped with inserts that 
provided removable endwalls and spacers, so that the horizontal aspect ratio could be 
varied from 3 to 2. Three containers were equipped with spacers and a false bottom, 
so that the vertical aspect ratio could be varied from 0.20 to 5.5. The containers were 
fastened to the table to ensure that they did not slip during start-up and were filled 
with distilled water. Bubbles on the wetted surfaces were removed with a paint brush. 
In the rigid-lid experiments, the containers were slightly overfilled. A clear lucite lid 
was slid across the surface ensuring that no bubbles formed in the fluid domain. The 
lid was then screwed down to ensure that it did not slip during the impulsive start-up. 
The dimensions of the containers used in the experiments shown in figures 9 and 12 
are given in table 1. 

To visualize the flow, red and blue food colouring was dropped into the leading 
corners (and in some cases in the centre) of the container before setting the lid on. 
The food colouring was applied at the surface and sank, creating a column through 
the water and a blob on the bottom. Still photographs and videos were obtained with 
cameras mounted on a frame attached to the rotating table. 

Many of the experimental results presented catalogue the flow patterns observed 
during spin-up in terms of the Reynolds number and horizontal and vertical aspect 
ratios for each experiment. These parameters depend on measurements of the length 
scales of the containers, the viscosity of the water, and the angular rotation rate of 
the container. The water temperature was not monitored during the experiments 
whose results are shown in figure9. For the experiments whose results are shown in 
figure 12, water from the same source as that used for the experiment was poured into 
a beaker at the same time as water was poured into the experimental container. The 
temperature of the water in the beaker was monitored, and the value of viscosity used 
in calculating Reynolds numbers for figure 12 corresponded to the tabulated value for 
that temperature from Weast (1976, p. F-51). However, it was later observed that the 
temperature of the water in the container may have been as much as 1 "C higher than 
the water in the beaker. (The temperature of the water for experiments conducted 
in container 7 was measured in the container before each experiment.) For the 
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results in figure9, a viscosity of = 0.0100 em's-' was used in determining Reynolds 
number. The actual temperature may have varied, as a conservative estimate, between 
17 and 22 ”Cover the months during which the experiments were conducted. The 
corresponding change in fluid viscosity is 0.009548 ,< Y ,< 0.01081 cm2 s-’ . This 
range of viscosity in addition to the measurement accuracy of lengths and rotation 
speeds represents as much as an 8 %  ambiguity in the value of the Reynolds numbers 
depicted in figure9, as a conservative estimate. The error in Reynolds number in 
figure 12 is as much as 3%. The viscosity used for parameters quoted in figures 2, 5, 
8, 10, 1 1, and 13 also used $1 = 0.0100 c m ’ ~ - ~ .  

Hard copies of the videos of the flow evolution were used to locate cyclone centres 
as a function of time. This procedure was somewhat subjective, since it is difficult to 
determine the centre of the cyclones from the snap-shots of the dye-lines. While the 
dye-lines of the cyclones remain circular, the centre is reasonably well identified, but 
as they become more distorted during interaction and merger, the dye at the centre 
becomes elongated. Thus the centre was identified as the centre of the elongated 
region. Section 7 presents a comparison of the tracks of the centres obtained from 
the experiments with those obtained from computations of streamlines. The dye- 
lines and the instantaneous streamlines do not coincide, especially during the rapid 
development stage associated with merger. Further, the centres of the instantaneous 
streamlines do not necessarily coincide with vorticity maxima, which in turn are not 
always a good indicator of a vortex centre (Jeong & Hussain 1995). 

Spin-up times were measured for low-Reynolds-number flows (Re - O( lo3)) by 
viewing videos of the evolving dye-lines taken in the rotating frame. By viewing 
the videos at high-speed, the velocity gradients were large enough so that a time 
was observable when the dye-lines seemed no longer to be evolving. These rather 
subjective measurements are not a quantitative measure of velocities, but provided a 
reproducible time by which the fluid was approximately in solid-body rotation. 

3. Formulation of the primary flow problem 
From experimental observations and classical approaches, the flow field away from 

boundaries can be decomposed into a primary flow and a secondary flow. The 
primary flow’s vortex lines are parallel to the rotation axis; hence, its velocity field is 
everywhere perpendicular to its vorticity field. So, in a coordinate system with one 
coordinate direction, z ,  aligned with the rotation axis, the primary flow is in general 
planar two-dimensional. If it also has azimuthal symmetry, then the primary flow 
is one-dimensional, varying spatially only with radial distance from the axis. The 
secondary flow is induced by the bending of the primary flow’s vortex lines, such 
as by the centrifugal instability responsible for the onset of Taylor vortex flow (a 
secondary flow) from circular Couette (the primary flow) in the ideal Taylor-Couette 
problem. The vortex line bending can also result from kinematic constraints, such 
as the presence of rigid surfaces not parallel to the rotation axis. In the case under 
investigation here, these rigid surfaces are the top and bottom of the container. 

For the nonlinear, non-axisymmetric situation considered here, we investigate the 
two-dimensional dynamics of the primary flow alone, without the influence of Ekman 
pumping or the advection and stretching of the vertical vorticity by the secondary 
flow. This model provides some indication of the extent to which the experiments 
are affected by Ekman pumping. This two-dimensional model, together with the 
experiments using a rigid lid, permits the isolation of the various influences on 
the system. Specifically, the free surface deformation is eliminated, both in the 
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experiments and the model. Further, the model eliminates the effects of Ekman 
pumping, thus allowing an examination of the dynamics due solely to horizontal 
viscous diffusion, two-dimensional boundary layer separation, and two-dimensional 
advection of vorticity. 

The governing equations with time scaled by 1/sZ and length scaled by L, the short 
horizontal length of the rectangular container, reduce to the evolution equation for 
the vertical component of vorticity, i, in a frame of reference rotating at angular 
velocity Q :  

where the stream function v(x, y, t )  is determined kinematically from 
it + v y i x  - v x i y  = V 2 i / R e ,  (3.1) 

V 2 y  = -i; (3.2) 

Re = QL2/v 
is the Reynolds number, and v is the kinematic viscosity. The boundary conditions are 
that the flows tangential and normal to the boundaries vanish, i.e. v is a constant, say 
0, on the sidewalls of the rectangular container. The fact that there is no tangential 
flow on the sidewalls together with (3.2) yields i = -vnn on the sidewalls, where the 
subscripts denote differentiation normal to the wall. Then 

[(-8h/2, y) = i(ah/2, y) = - v r x ,  

and 

where 

is the horizontal aspect ratio of the container and W is its long horizontal length. 
This two-dimensional system corresponds to the limiting case where the vertical aspect 
ratio of the container, 

6, = H / L ,  
goes to infinity. For the case of impulsive spin-up from rest, the initial condition is 
[ = -2; the Rossby number R o  = AQ/Q = 1, and the Taylor number Ta = QL2/v.  
In general, Re  = RoTa. The Rossby number is the ratio of convective to Coriolis 
accelerations and gives an estimate of the relative importance of the nonlinear terms. 
The Taylor number is the ratio of Coriolis force to the viscous force in the fluid. 
The Reynolds number is the ratio of convective to viscous force. So, for nonlinear 
impulsive spin-up from rest, the primary flow is governed by only one dynamic non- 
dimensional parameter Re = Ta, and by a geometric parameter, the horizontal aspect 
ratio h,,. 

i k  -112) = i(x, 1/21 = -Yyy, 

8h = w / L  

4. Numerical method of solution for the primary flow 
The system of equations (3.1) and (3.2) is solved using second-order central differ- 

ences on a non-uniform grid designed to resolve the thin sidewall boundary layers 
formed following the impulsive start. The stretched grid is given by 

xt = &,(xi + a sin(2nxi)) 

yl = y j  + b sin(2nyj), 
and 
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where xi = -1/2 + ( i  - l ) / (nx - I ) ,  i = 1 to nx, and y j  = -1/2 + ( j  - l ) / (ny  - l), 
j = 1 to ny. In all the results presented, the stretching factors used are a = b = 0.1. 
This choice concentrates points near the boundaries, but not to the extent where the 
interior resolution suffers. The ratio of maximum to minimum grid spacing over the 
whole domain is approximately 4.4. Time integration of (3.1) is accomplished by a 
second-order predictor-corrector scheme. 

The discrete version of (3.2) is solved for i p  on the interior grid points using the 
generalized cyclic reduction method of Sweet (1974). The values of [ on the sidewalls 
are evaluated by discretizing derivatives with one-sided differences, and by using (3.2) 
and the boundary conditions on yl .  

Extensive tests have been run to ensure that the solutions presented are independent 
of spatial and temporal resolution for Re = lo4 and 6 h  = 2.28 as a test case. Typically, 
the errors in ~1 are an order of magnitude smaller than the errors in [. It was found 
that nv 2 301 was needed to sufficiently resolve the vorticity field. The temporal 
discretization was indeed found to be second-order accurate. Using approximately the 
largest 6 t  = 1.25 x lo-' for which the scheme is stable on the 301 x 685 grid results in 
about 6-figure accuracy. All the computations presented here were performed using 
64-bit arithmetic on an IBM RS6000 SP2. 

5. Symmetries of the system 
Although the distinguishing feature between spin-up in the rectangular container 

presented here and the classical spin-up in an axisymmetric right-circular container 
is the lack of azimuthal symmetry, the present system also has a large degree of 
symmetry. Owing to the presence of the rigid top endwall, the system has reflectional 
symmetry about the container half-height at z = H/2. This reflection plane may 
be thought of as a non-deformeable free surface. There are also symmetries in the 
horizontal direction. The system is invariant to rotations of TC radcentred about the 
rotation axis (in a circular cylinder, the system is invariant to any rotation and in 
a square container, it is invariant to rotations of n/2 rad). For low Re, we expect 
the flow to preserve these symmetries and for increasing Re perhaps to break them. 
The experiments suggest that horizontal symmetry breaking first occurs for Re near 
that required for the merger of the cyclonic cells. Whilst we observe this correlation, 
we have no basis to claim any causal relationship. The numerics show non-trivial 
departures from the horizontal symmetry for Re > lo4. 

A further observation regarding the symmetry of this system is that there exist two 
distinct states related by a reflection. If (cI(x, y ,  t ) ,  wl(x, y ,  t ) )  is a state satisfying (3.1) 
and (3.2), then so is (cz(x, y ,  t ) ,  y2(x, y, t ) )  where 

idx,  y ,  I) = - i 1  (-x, y ,  t )  = -[I (.% -y, t ) ,  (5.1) 

and 

These alternative states are arrived at trivially mathematically. In some experiments 
for which the external parameters were the same, we did observe two flow states that 
appeared to be related by the reflectional symmetry (5.1) and (5.2). We will re-address 
the symmetries of this system and describe the experiments with the multiple states 
in 536.4 and 6.5. 
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FIGURE 1. Schematic plan view of the rectangular container. The corners a and c are termed 
leading corners and b and d are trailing corners. 

6. Results from laboratory and numerical experiments 
Herein we describe the flow evolution from rest to solid-body rotation (in the inertial 

reference frame) observed in the experiments. In particular, we show photographs 
of the pathlines of the flow as a function of various parameters of the problem 
including the horizontal aspect ratio 6 h  = W / L ,  the vertical aspect ratio 6, = H / L ,  
and the Reynolds number Re = Q L 2 / v .  Figure1 shows a schematic plan view of 
the container at rest and displaced a small amount after start-up with the ‘leading’ 
corners, a and c, and the ‘trailing’ corners, b and d labelled for discussion. Upon 
viewing the photographs, recall that they are of the pathlines of the flow, not the 
streamlines. Thus, the ‘vortices’ in the photographs may or may not indicate vorticity. 
For example, many of the photographs shown are taken after the fluid was essentially 
spun up, when the velocities approached zero (in the rotating frame) ; thus, the circular 
pathlines show the history of vortices, rather than active vortices. 

Results from numerical computations are also discussed. We do not attempt to 
make a direct quantitative comparison between experimental and numerical results; 
rather, we seek to use both in a complementary fashion to help understand the flow. 

6.1. Cyclone formation and evolution 
The experiments demonstrate two main types of flow evolution. For lower Reynolds 
numbers, O( lo3), a three-cell pattern of cyclonic-anticyclonic-cyclonic (+ - +) vort- 
icity developed. For higher Reynolds numbers the two cyclonic cells merged 
at the centre resulting in a three-cell pattern of anticyclonic-cyclonic-anticyclonic 
(- + -) vorticity. 

The evolution of the flow at low Re was described by Stewart (1993) and van de 
Konijnenberg et al. (1994); an example with a rigid top is shown in figure 2a. In these 
overhead photographs of the pathline evolution, drops of blue, red, and yellow dye 
were initially introduced in corners a, c, and the centre respectively. Upon onset of 
rotation, boundary layers develop on the sidewall, top, and bottom boundaries. The 
Ekman layers on the top and bottom boundaries cause fluid there to be accelerated 
outward into the sidewall layers. A slow flow of dye from the bottom Ekman layer 
was observed to wind its way up the sidewall boundary layer (there is presumably a 
corresponding flow from the top Ekman layer, but this is not visualized as the dye 
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settles primarily in the bottom portions of the container). Immediately following the 
impulsive start, the sidewall layers begin to separate, forming free shear layers that roll 
up near the corners to form cyclonic cells (e.g. t = 3 in figure 2a). These cyclonic cells 
form in all four corners. They are not identical except in the degenerate case of Sh = 1. 
As in the schematic of figure 1, the cyclones that form in the leading corners are larger 
and eventually dominate those formed in the trailing corners. The cyclonic cells in the 
leading corners continue to grow until their diameter is comparable to L. Their final 
size and location depends primarily on bh as will be discussed below. A view from the 
side of the container shows that the cyclones wind up and outward during the early 
part of the evolution. After a few rotation periods they form concentric columns that 
appear quite uniform in the vertical; the direction of the weak vertical flow cannot 
be determined from the dye-lines after a few rotation periods. The secondary, vertical 
flow is quite weak (of 0(10-3[) according to Pedlosky 1984), and cannot be resolved 
with the flow visualization used here once the dye is distributed vertically. 

Observations in the rotating reference frame show that the cyclones initially have 
an angular velocity that is larger than that of the rotating container. This is also 
borne out in the computations. Even for Re = 2.4 x lo3, the computations show 
that by t = 10 the peak relative vorticity of the cyclones is > 2 and for t > 15, 
their vorticity decays, as indicated by the profiles shown in figure3 of [ through 
the midplane y = 0 at various times as indicated. For larger Re, the cyclone’s [ is 
even larger. For example, figure4 shows [ through the midplane for Re = lo4 and 
b h  = 2.2. At t = 18, the peak [ in this plane is = 11 (the peak [ of the cyclones 
is larger as the peaks do not reside in the plane at this time), and even after the 
merger, at t = 70, the peak ( of the resultant cyclone in the centre is = 5.5. Note 
also that for Re = lo4, the peak negative [ is < -2, getting as large as -4 at times. 
These peak negative [ at large Re are a result of sidewall boundary layer separations 
rather than anticyclones being spun-up by shear from surrounding cyclones, as is 
the case with the anticyclone in the centre of the Re = 2.4 x 10’ flow. Only in the 
sidewall layers of the Re = 2.4 x l o 3  flow is [ < -2. In summary, the spin-up of the 
fluid in the rectangular container consists largely of a spin-down of the cyclones. For 
low-Re flows the cyclones transfer angular momentum to the fluid in the centre of 
the container by viscous shear. The fluid in the centre of the container initially has 
zero velocity (in the inertial reference frame) and remains essentially stationary until 
t w 10 when it begins to spiral due to shear from the cyclonic cells. 

6.2. Low-Re flows 
There appear to be two dominant time scales for low-Re flows. The first is the time 
for the cyclones to form, O(l/L?) (i.e. the cyclones form within one rotation period 
regardless of the size, speed, or depth of the container). The second is the time for 
the cyclones to transfer their angular momentum to the anticyclone until the whole 
system is in solid-body rotation. Figure5 shows measurements of the time, z, for 
spin-up to solid body rotation for two sets of experiments in which there was no 
merger: one in which the depth was varied and one in which the rotation rate was 
varied. Note that unlike the rest of the experiments discussed herein, the experiments 
depicted in figure 5 used a free surface, rather than a rigid lid. Figure 5 shows that z/Q 
scales like the Ekman time scale, TE = (H2/vL?)’/’. In contrast to the axisymmetric 
case where the velocities scale with TE throughout the spin-up process, here the scale 
applies only after the cyclones have essentially reached their final locations. The data 
in figure5 support the assertion of van Heijst et a/.  (1990) that the time scale for the 
decay of the cells is the Ekman time scale. 
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FIGURE 2. Overhead photographs of the evolution of dye-lines in (a) a non-merger experiment at 
various non-dimensional times t with ah = 2.28, 6, = 0.65, Re = 2360, and L = 15.3 cm ; and (b)  a 
merger experiment at various non-dimensional times t with 6 h  = 2.20, 6, = 0.79, Re = 1.29 x lo4, 
and L = 12.7 cm. 
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FIGURE 3. < on the midplane y = 0 for Re = 2.4 x lo', 6 h  = 2.28 at times as indicated from the 
calculation on the (301 x 685) grid with 6 t  = 1.25 x lo-'. 

X +6h/2 

FIGURE 4. < on the midplane y = 0 for Re = lo4, b h  = 2.20 at times as indicated from the 
calculation on the (301 x 661) grid with 6t  = 1.25 x lo-'. 
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FIGURE 5. Measured times for spin-up (non-dimensionalized by the rotation rate) as a function of 
TEQ for two sets of experiments, one in which the depth was fixed and the rotation rate was varied 
(o), and one in which the rotation rate was fixed and the depth was varied (o), both for 6 h  = 3.0. 
The line shows a least-squares fit such that z = 3.47(H’f2/~)’/~ + 0.31. 

Stewart (1993) presented photographs of the pathlines to spin-up for varying depths 
with a fixed 52, and for varying 52 with a fixed depth, both for a given horizontal 
aspect ratio. Those experiments have shown that if the depth is ‘shallow enough‘, or 
if 52 is ‘large enough’, then the system spins up before the cyclones have a chance 
to move significantly out of the corners from where they are initiated. The data 
in figure 5 and the corresponding photographs from Stewart (1993) show that when 
TE is less than approximately 10/52, the cyclones do not have sufficient time before 
spin-up to move significantly out of the corners. Thus, in experiments for which TE 
is less than approximately 10/52, Ekman pumping due to the horizontal boundaries 
dominates in the spin-up process. However, in experiments for which the Ekman time 
scale is large compared to the rotation period, the dominant dynamics as manifested 
in the cyclone evolution, is primarily due to the effects of the sidewalls. In such 
experiments, which are the focus of the present study, the fact that the evolution 
of the anticyclones in the centre of the container is much slower than the evolution 
of the cyclones, and correspondingly, the fact that the Ekman time scales are long 
compared to the rotation rates, are qualitative indications that Ekman pumping is a 
weak process in the overall evolution of the system. 

The slower spin-up time for anticyclones is also reflected in the computations of 
the dynamics of the interior primary flow (in which there is no Ekman pumping) 
depicted in figure6, which shows [ and y for Re = 2.36 x lo3 and d h  = 2.28 for the 
various times during the spin-up that correspond to the photographs in figure 2(a). 
We emphasize again that the photographs are of pathlines, rather than vorticity or 
streamlines. Nevertheless, there is a striking correspondence between the experiment 
and the numerical simulation when comparing the sizes of the cells and their locations 
at various times. This comparison does not involve flow velocities, which were not 
measured here. Hence, figures 2(a) and 6 show that the two-dimensional dynamics 
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of the primary interior flow are adequate in describing the flow patterns and their 
corresponding times when the Reynolds numbers are small. They say nothing about 
the two-dimensional model's capability of predicting flow velocities. Note that in both 
the experiments in figure2(a) and the computations in figure6 there is evidence of 
secondary boundary layer separation behind the cyclone that is forming in corner a at 
about t = 5.  We note that at this low Re, the stability of the numerics is dominated by 
the diffusion requirement (Williams 1967), 6 t  < 6x2Re/8. For stable computations, a 
6 t  of half that used for R e  = 5 x lo3 was needed for the R e  = 2.36 x lo3 computation 
on the same spatial grid, suggesting that viscous effects are important in the horizontal 
dynamics of flows with Re in this range. 

6.3. High-Re f7ows 

The evolution of the flow at high Reynolds numbers was first described by van 
Heijst et al. (1990) and later observed by Stewart (1993). The initial formation of the 
cyclonic cells in the corners is as described above for the low-Re flows. However, for 
high Re  the cyclones continue to evolve past the state shown in figure 2(a); they travel 
towards the centre of the container, rotate around each other, and merge, as shown 
in figure 2(b). Here again, figure 2(b) shows overhead photographs of the evolution of 
the pathlines in a particular experiment. We have shown photographs of the merger 
process for a flow with 6, = 0.79, because in deeper containers for which the merger 
process looks essentially the same, the photographs are less vivid because the dye is 
spread over a large column. The videos of the merger and non-merger experiments 
show that as in the numerical computations shown in figures 3 and 4, the cyclones 
in the merger experiments are initially more intense than those in the non-merger 
experiments. From these videos, for Re - 0 ( lo4), we estimate that the cyclones rotate 
about three to four times faster than the container. 

Figure 7 shows computations of [ and y for 6 h  = 2.2, and Re = lo4. The Reynolds 
number is less than that of figure 2(h); in the computations when Re = 1.29 x lo4, the 
flow exhibited symmetry breaking (see figure lo), rather than a clean merger event 
like those depicted in figures 2 ( b )  and 7. The point of this qualitative comparison is 
to show that a merger event of the same type as observed in the experiments can be 
captured by the two-dimensional model of the interior primary flow. Thus, the weak 
secondary flow, contributing vertical motions, is not a prerequisite for vortex merger 
in this system. However, we note that the merger process and vortex evolution in the 
experiments occurs much faster than in the numerics as shown by the times listed 
in figures 2(6) and 7. The differing time scales of the high-Re evolution between the 
experiments and the computations of the interior primary flow are likely to be due 
to Ekman pumping in the experiments. The experiments correspond to 6,. = 0.79, 
whereas the computations correspond to the limit 8,. +. x. Figure 5 shows that T K H 
as is TE.  In the experiments, H is finite, so that Ekman pumping, though a secondary 
effect, provides an additional spin-up mechanism that is not present in the numerics. 

Experiments also indicate that the time for merger depends on &. For 61, < 2.5 the 
time for the merger process to begin is about 25 +_ 5 time units, independent of the 
Reynolds number, while for 81, > 2.5 it varied between about 50 and 80 time units, 
depending on the Reynolds number. In the computations, with 61, = 2.2 and 6,. + m, 
for the Re values where the cyclones merge, they do  so after about 60 time units. 

6.4. Symmetries observed in the experiments 
The final flow patterns of the non-merger and merger cases demonstrate a horizontal 
symmetry. as discussed in $5. Figure2(a) ( t  = 40) shows that in the non-merger case, 
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6. Contours of i ( a )  and w (bl at the times as indicated for Re = 2.36 x lo3 and ~ ~ ~ ~~~. . , ,  

6 h  = 2.28 calculated a grid 'of size 151 x 343 with 6 t  = 1.25 x lop3. The contour levels 
are non-uniformly spaced, with 20 positive (solid lines) and 20 negative (dashed lines), deter- 
mined by c-level(i)=Max(uariable) x (i/20)3 and c-level(i)=Min(uariable) x ( i /20)3 respectively, with 
i = 1 to 20. For all the plots, the following have been used: Max([) = -Min([) = 100 and 
Max(W) = -Min(yi) = 0.3. 
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FIGURL 7 Contours of [ (a )  and ‘11 ( b )  at  the times as indicated for Re = lo4 and S h  = 2.20 
calculated a grid of size 301 x 661 with S t  = I 2 5  x lo-’. Contour levels are as determined in 
figure 6 
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the cell patterns are (+ - +)with centres that reside on an axis at some angle 0 to 
the long axis of the container. Figure2(b) ( t  = 95) shows that in the merger case, 
the cell patterns are (- + -)with centres that reside on an axis at -0. We point out 
this observation recalling that the only solution to the unsteady problem as t -+ co 
is that of solid-body rotation, with w = 0 and [ = 0. Figure8 shows this horizontal 
symmetry of the non-merger and merger patterns. It consists of photographs of the 
pathlines (near spin-up) of non-merger events (figure 8i) and merger events (figure 8ii) 
as & is varied from 3 to 2. Variations in 8 with 6 h  remain small for 6 h  > 2.5. For 
8 h  < 2.5 counter-rotating vortices in the trailing corners become significant. 

6.5. Critical Reynolds number for  cyclone merger 
Experiments were also conducted in which the Reynolds number, Re, and the hor- 
izontal and vertical aspect ratios, bh and 6,, were varied to determine parameter 
regimes for the occurrence of the two patterns discussed in $6.1. The primary result is 
that vortex merger occurs at some critical Reynolds number, dependent upon 6 h  and 
6,. We denote Re, as the lowest Re, for a given b h  and a,, at which merger occurs. 
Nevertheless, in some experiments with Re > Re, the cyclones did not merge. 

Below some Re, the cyclonic vortices initiated in the leading corners filled their 
respective approximate thirds of the container, as in figure 2(a). Near Re, the cyclones 
travelled to the centre of the container and merged as shown in figure 2(b). Figure 9 
shows a parameter space of experimental results for 6, = 0.79, for which the observed 
flow patterns are classified (see the discussion below). The main result is that Re, 
increases with increasing bh. We note that computations give a significantly lower 
Re, than observed in the experiments. Since Re, is captured only qualitatively by the 
numerics, further quantitative comparisons, such as a numerically obtained parameter 
space corresponding to figure 9, were not attempted. 

The parameter space mapped out in figure9 shows that for Reynolds numbers 
above Re,, the pattern of flow evolution was complicated. For b h  =: 2, the flow 
pattern was fairly ordered and exhibited merger as in figure2(b). For dh w 3, the flow 
exhibited a number of different patterns. The various observed pathlines above Re, 
are classified as patterns in which the vorticity at the centre was as follows. 

( a )  ( 0 )  Anticyclonic from a non-merger case, as shown in figure2(a). 
(b)  ( 0 )  Cyclonic from a merger event, as shown in figure2(b). 
(c)  (n) Cyclonic from either a merger event, unlike that shown in figure 2(b), or from 

a situation in which the horizontal symmetry of the rectangular container was broken 
resulting in pathlines that were complicated and disordered. Such an experiment is 
shown in figurelO(a). FigurelO(b) shows a similar flow structure for vorticity from 
the computations, which were also conducted at Re > Re,. In both the experiment 
and computation of figure 10 the 7c-rotational symmetry of the system described in 
$55 and 6.4 was broken leaving one of many anomalous patterns that may arise at 
Re > Re,.  This anomalous pattern occurring in the numerics shows that Ekman 
pumping is not required to break this symmetry. 

( d )  (0) Cyclonic from a merger event unlike that shown in figure 2(b), but resulting 
in pathlines that showed a clean 3-cell pattern like that in figure 2(b). 

(e)  (A) Neither cyclonic or anticyclonic; here the cyclonic cells travelled toward 
the centre of the container, touched and remained stable, joined at the centre. 
The instantaneous stream function had a saddle point rather than a centre at the 
container centre. This configuration was stable once it was set up, but was not always 
reproducible for the parameters shown in figure9. In some experiments the small 
anticyclones at the top and bottom of the container centre would slowly shear fluid 
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FIGURL 8. Overhead photographs of the dye-line patterns near spin-up for non-merger experiments 
(i) and merger experiments (ii) in which 6, = 0.79 and L = 12.7 cm,  where (a )  bh = 3.0, (i) 
Re = 5.00 x lo3, (ii) Re = 2.62 x lo4; (6) bh = 2.8, (1) Re = 6.55 x lo', (ii) R e  = 2.61 x lo4;  
(c) C S , ~  = 2.6, ( i )  Re = 6.55 x lo', ( i i )  Re = 2.46 x lo4: ( ( 1 )  b,, = 2.4, (i) Re = 6.55 x lo', (ii) 
Re = 1.30 x 10'; ( e )  CS,, = 2.2, (i) Re = 6.55 x lo7, ( i i )  Re = 1.46 x lo4; (/) bh = 2.0, (i) 
Re = 6.55 x 10'. (ii) Re = 1.47 x lo4. 

FIGURt 11. An cxample of the two-celled pattern with a saddle point in the centre of the container. 
Here,b, =0 .79 ,&=2.4 .andRe==2.13x104.  
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FIGURE 9. Classification of observed patterns of dye-line evolution as a function of Re and 6h for 
6, = 0.79. Patterns are classified as (+ - +), as in figure2(a); 0 (- + -), as in figure2(b); o, 
one with a cyclonic centre resulting from symmetry breaking that may or may not have involved 
cyclone-merger; 0, merger that was not like that in figure 2(b), but resulted in the pattern shown for 
t = 95 in figure2(b); and A, a two-celled pattern with a saddle point in the centre of the container, 
rather than a centre. 

from the cyclones until the two anticyclones would join, separate the cyclones and 
result in the formation of the (+ - +) pattern shown in figure 2(a). A stable example 
is shown in figure 11  (see page 125). 

We note that all of the results in figure9 were obtained from a single container, 
container 1 in table 1, that used spacers at the endwalls to change 6 h .  Results for 
Re < Re, were reproducible. The complicated flow patterns for Re > Re, were 
not necessarily reproducible; nevertheless, the qualitative behaviour of merger and 
symmetry breaking was reproducible. 

6.6, Eflects of jinite depth 
Figure 12 shows the dependence of the critical Reynolds number on the vertical aspect 
ratio for a fixed horizontal aspect ratio. The main result is that Re, does not vary 
monotonically with increasing 6,. Instead, cyclone evolution is markedly different for 
6, above and below 1. For 6, < 1, Re, seems to decrease rapidly with increasing 
6,. For quite small 6,, the fluid spun up before the patterns in figure2 were fully 
realized. For example, the merger events for 6, = 0.20 only had time to evolve to a 
state between the third and fourth photo of figure2(b). This result is in accordance 
with the previous result that Ekman pumping becomes an important mechanism in 
the spin-up process when TE is less than approximately lO/Q. 

For 6, = 0.8 the critical Reynolds number for merger was quite small. This 
was true in two different boxes with similar 6 h .  For 6, = 0.95, the experimental 
results were unusual. The first merger event was at a low Re, but non-merger events 
proliferated for further increases in Re. For some values of the external parameters, 
both merger and non-merger events were observed with 6 ,  = 0.95. These merger 
and non-merger cases occurring in the 6, = 0.95 container for the same parameters 
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FIGURE 10. (a )  Photograph of flow near spin-up with Re = 1.64 x lo4, dh = 2.8, 6, = 0.79 and 
L = 12.7 cm. (b)  Contours of computed i of  a flow at  t = 60 with Re = 1.29 x lo4 and 6 h  = 2.20. 
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FIGURE 12. Experimentally determined patterns of dye-line evolution as a function of Re and 6,. 
for &, = 2.28. Patterns are classified as 0 (+ - +), as in figure2(a); 0 (- + -), as in figure2(h); 
n, with a cyclonic centre resulting from symmetry breaking that may or may not have involved 
cyclone-merger; and A, a two-celled pattern with a saddle point in the centre of the container. The 
numbers above each column of data identify the container used for the experiments at that 6,. (see 
table 1). 
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are an example of the reflectional symmetry described by (5.1) and (5.2). However, 
the existence of multiple states at low Re for fixed parameters was not observed in 
experiments with other containers, for which the results depicted in figure 12 (as in 
figure91 were reproducible for R e  < Re,. Also as in figure9, for experiments in the 
other containers with R e  > Re,, the details of the complicated patterns were not 
necessarily reproducible, but the basic phenomena of symmetry breaking and merger 
were. We note that the container with 6, = 0.95 was made of the same materials as the 
other containers and was fastened in the same fashion. The results in figure 12 were 
obtained in six containers, indicated at the top of each column of data, corresponding 
to the labels in table 1. 

In experiments for which 6, = 1.2 the critical Reynolds number was quite large. 
One merger event was observed, but was not reproducible. In general, the cyclones 
did not merge for Reynolds numbers obtainable within the mechanical constraints of 
the experiment. In experiments for which 6, > 1.2, Re, NN 2 x lo4 and changed little 
with increasing vertical aspect ratio. The small change in critical Reynolds number 
with increasing depth indicates that 6, would have to be increased by about an order 
of magnitude before achieving the two-dimensional limit of m 6.5 x lo3 that was 
obtained in the two-dimensional computations. We also note that the observed times 
at which merger occurred did not depend significantly on 6,. 

All of the experiments discussed above were conducted in containers with a rigid 
lid. When the experiments were conducted with a free surface, the behaviour of the 
flow was qualitatively the same as described above; however, the critical Reynolds 
number for merger was about 40% less, and the times for merger were less, than 
in experiments with a rigid lid. Since the surface deformation is small (Froude 
number, Q2 L2/gH - 0 ( these free-surface experiments essentially correspond 
to rigid-lid experiments with twice the depth. 

6.7. Variable initial conditions 
All of the experiments discussed above used the impulsive start for an initial condition. 
However, in some cases the results did change if the container was varied linearly 
from zero rotation to the final rotation rate over some finite time period. For example, 
for a container with 6 h  = 2.28, 6, = 0.95 and R e  = 1.22 x lo4, the cyclonic vortices 
did not merge when the start-up was impulsive. However, merger did occur when the 
change in rotation rate was varied linearly over 0.1 s ,  or 0.018 of a rotation period. 
For this same container with Re = 1.33 x lo4, the cyclones did not merge with an 
impulsive start-up or for a linear ramp time of 0.1 s ,  but did merge for a ramp time 
of 1 s ,  or 0.19 of a rotation period. For Re = 1.56 x lo4 the cyclones did not merge 
with an impulsive start-up or for linear ramps of 1, 2 or 5 s ,  the last of which is 1.12 
of a rotation period. 

7. Tracks of the cyclonic cells 
The most visually striking aspect of this flow is the early formation of cyclonic 

cells at the corners following the impulsive start-up. It is tempting to try and describe 
their subsequent evolution in terms of the dynamics of isolated vorticies; however, 
these cells are not isolated vorticies, and, while many aspects of their dynamics are 
very similar, they do not behave as such. 

Although the vortex merger shown in figure2(b) is quite reminiscent of other types 
of merger events, e.g. the merger of two identical isolated patches of uniform vorticity 
in an irrotational background (Dritschel 1986), two-dimensional vortex merger in 
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FIGURE 13. Measured tracks of cyclone centres for & = 2.28 and Re as indicated. The dye-line 
patterns near spin-up are characterized by the non-merger pattern of figure 2(a) for the Re = 5 x lo3 
track, and the merger pattern of figure 3(b)  for the Re = 2.6 x lo4 track. Times are also indicated 
on the figure. 

isolation for very large Reynolds number flow with ‘hyperviscosity’ to suppress small- 
scale motions (Melander, Zabusky & McWilliams 1988), and the merger of two 
identical vortices in a uniform strain field in an unbounded domain, over a range of 
Reynolds numbers (Buntine & Pullin 1989), the details are different due to the effects 
of the sidewalls. The merger event in figure2(b) also has many features in common 
with the photographs of the experiment conducted by Griffiths & Hopfinger (1991), 
where two identical cyclones undergo merger. Their experiments were designed to 
minimize the effects of the sidewall; the cyclones were introduced into an environment 
with uniform background vorticity, and were conducted with a free surface. The 
cyclones in our experiment are not evolving in isolation; the vorticity produced by 
the acceleration of the sidewalls is of both signs. The positive vorticity primarily rolls 
up to produce the cyclones, and the negative vorticity is primarily wrapped around 
the cyclones. Even in the low Re = 2.36 x lo3 case (figure2a), there is evidence of 
secondary boundary layer separation feeding anticyclonic vorticity into the interior. 
The flow visualizations do not give a very clear picture of this, and we appeal to the 
two-dimensional numerical model of the primary interior flow for some indication of 
the processes involved. 

In spite of the associated problems (see 53) it is instructive to attempt to identify the 
cyclone centres and follow them in time. Figure 13 presents non-merger and merger 
cases from the experiments; figure 14 shows cyclone tracks from computations. From 
the numerical model, the centres of the instantaneous streamlines were tracked, rather 
than the maximum of the cyclonic vorticity. The two give slightly different tracks, 
and the choice was made because the centres of the instantaneous streamlines are not 
only local maxima but, in their respective halves of the container, they are also global 
maxima, whereas the vorticity maxima at different times occur in the boundary layers 
or the separated shear layers or in the cyclonic cells, and automated centre detection 
is not straightforward. The dots on the tracks in figure 14 are equally spaced in time 
(every 4 time units) in order to give some indication of the speed of the cyclones at 
the various stages of the evolution. 

The tracks for Re < lo4 are virtually indistinguishable for t < 20. In essence, 
this demonstrates the inertia of the cells causing them to remain stationary in the 
laboratory frame. For low Re, these cells remain monopolar for all time, viscous forces 
aiding to keep them smooth and circular, and their tracks smooth. They eventually 
reach locations (1.47, -0.18) and (-1.47,0.18), which we shall simply refer to as the 
(+ - +) locations. In experiments with the rigid lid, the final location of the cyclones 
is essentially independent of Re, in accordance with the numerical results. However, 
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FIGURE 14. Tracks of cyclone centres for 6 h  = 2.28 and Re as indicated. The dots on the tracks are 
spaced four time units apart. The tracks are of the centres of the instantaneous stream function 
corresponding to the cyclonic cells, calculated on the (301 x 685) grid, except for the Re = 2.36 x lo3 
case which used a (151 x 343) grid, with 6 t  = 1.25 x 

Stewart (1993) reported that in experiments with a free surface, the cyclones tend to 
migrate closer to the centre as Re is increased. 

At higher Re (e.g. Re = 5 x lo3 as shown in figure 14), the cyclone tracks take on 
a trochoidal motion as they approach the (+ - +) locations. This trochoidal motion 
of the cyclone centres is also observed in the present experiments with a rigid lid and 
in the free-surface experiments of Stewart (1993). At these Re, the numerics suggest 
that the trochoidal motion is induced by the feeding of anticyclonic vorticity from the 
sidewall layer at the secondary separation point. This anticyclonic vorticity tends to 
wrap around the cyclonic cell and at times aggregates to form small anticyclonic cells, 
thus producing a multi-polar cell complex. These satellite anticyclonic cells rotate 
about the cyclone in the cyclonic direction. They are short lived, surviving only on 
the order of one rotation time around the cyclone before they are annihilated by 
viscous diffusion, but new anticyclonic cells are fed in from the sidewall layers. Their 
presence effectively steers the cyclone off the smooth track, resulting in the observed 
trochoidal motions. At later times ( t  > 90), the cyclone centres drift away from 
the (+ - +)locations. For Re = 5 x lo3, the cyclones have spun down considerably 
by t = 90 and although centres of y are still identifiable, they no longer constitute 
centres of vortical cells. For Re = 6 x lo3 however, the cyclones’ peak ( is greater 
than 2 at late times, and they track along the top and bottom sidewalls. The cyclones 
eventually settle in the (+ - +)locations, but diagonally opposite to the locations 
each cyclone initially tracked to. The panels in figures 13 and 14 covering a large 
range of Re and dynamics demonstrate that in all cases the cyclones initially track 
towards the (+ - +) locations. 
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For Re = lo4 (figure 14), the trochoidal motion begins at very early times (however, 
the loops are not as evident in the figure as there is a large linear component to their 
motion). In this case, the cyclonic cell has a thin, intense layer of anticyclonic vorticity 
wrapped around it from a very early time. As depicted in figure7 at t = 18, which 
shows a very similar flow corresponding to Re = lo4 and dh = 2.2, there is also a 
thin intense layer of cyclonic vorticity wrapping around the thin layer of anticyclonic 
vorticity, and by this early time, the cyclonic cell already has some satellite vorticies 
circling it, causing the trochoidal motion. These two shear layers originate from the 
boundary layer on the wall at y = -0.5. There is another shear layer wrapping around 
the cyclonic cell originating from the boundary layer on the wall at x = -W/2L, and 
also a shear layer wrapping around from the wall at y = 0.5. 

At t = 60, the shear layers of anticyclonic vorticity from the walls at y = 0.5 and 
x = -W/2L have combined and rolled up to produce an anticyclonic cell which 
links up with the cyclonic cell to produce a skewed dipolar cell, with the cyclonic 
part being dominant. The dipole on the left begins to migrate to the right and 
the one on the right migrates to the left. By t = 78 (merger occurs earlier for the 
lower-dh case shown in figure 7) the cyclonic parts of the two dipoles undergo merger, 
as depicted in figure7, to form a cyclonic cell in the centre of the container. The 
anticyclonic parts of the cyclones eventually settle down to produce the anticyclones 
flanking the cyclone in the (- + -)configuration. Notice however, that at t = 74, the 
configuration is not a simple (- + -) formation: there are small, weak cyclonic cells 
near the trailing corners as well. The flow visualizations (e.g. figure 2b at t = 95) also 
show dye-lines which are suggestive of the presence of weak cyclones near the trailing 
corners following a merger event. 

The criterion for the inviscid merger of two identical, isolated patches of uniform 
vorticity (Zabusky, Hughes & Roberts 1979), based on the ratio of their separation 
to their radius is not appropriate here, where the cyclones are not isolated. Further, 
experiments show that, in fact, it does not hold here. For example, figure 11 shows 
an experiment in which two cyclones actually touched in a stable configuration 
without merging. The cyclonic cells initially always tend to migrate towards the 
(+ - +) locations, regardless of whether they subsequently merge or not. Their radius 
is primarily determined by L, d,,, and to some extent by Re. Cyclones tend to have 
smaller radii for larger Re. Yet, we find that merger occurs for larger Re. This is 
not to suggest that the merger events observed here are viscous processes, but rather 
that the conditions required for merger are Re dependent. Primarily, we feel, Re 
determines the intensity of the cyclonic cells following the roll-up of the separated 
sidewall layers and how fast their vorticity is diffused compared to their convection 
speed. 

Our merger events share some similarities with the scenario presented by Melander 
et al. (1988). Their criterion, based on the inviscid moment-model equations and 
verified by numerical computations of the Euler equations, hinges on the existence of 
a stable state. The possibility of merger depends on whether the angular impulse 

D = J 1 i(x, y)(x2 + y2)dxdy 

of the two symmetric isolated vortices is above or below some critical value, D ~ ,  
determining the existence of a steady co-rotating state. For D < o0 there is no steady 
co-rotating state, so merger will occur for all initial conditions. Whereas for 0 > oc, 
both stable and unstable states exist, and merger may or may not occur, depending 
on initial conditions. Our observation that the cyclonic cells in the two-dimensional 
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model, for all R e  considered, initially tend towards the (+ - +) locations is suggestive 
of an underlying attractor. However, the flow is continuously evolving (spinning 
up) and there are no conserved quantities, so the concept of a stable state is not 
clear. Further, the effects of sidewalls and the distribution of other vortical flow 
are not accounted for in the Melander et al. (1988) scenario. Another important 
aspect of their scenario is the production of a tangle of nearly concentric vortex 
filaments following the merger. While both the experimental dye-lines (figure 2b) and 
the computations from the two-dimensional model (figure 7) give evidence of thin 
vortical strands wrapped around the central cyclone following merger, it is not clear 
to what extent these are composed of fluid expelled from the cyclones during the 
merger or whether they are vortical fluid extracted from the sidewall layers following 
separation induced by the interior flow. 

The case of R e  = 8 x lo3 (figures 14 and 15) also shows evidence of the influence 
of the sidewalls on the merger. In this case, the two cyclones begin to merge as in the 
other merger cases; however, part way into the merger, as the two cyclones begin to 
rotate about their common centre cyclonically and become elongated, they come into 
contact with the sidewall. At this point, rather than continue with the merger, they 
each travel along the sidewalls and eventually reside in the (+ - +)locations. This 
result is also observed in the experiments for which 6, > 4. It was not observed in 
experiments in shallower containers, where presumably the vertical flow that tends to 
enhance merger dominates the sidewall effects that might act to inhibit it. 

8. Summary 
Investigation of the impulsive spin-up of a fluid from rest in non-axisymmetric 

containers has shown that the spin-up process can be dominated by a process not 
present in axisymmetric containers (at least while the flow in the axisymmetric 
containers retains azimuthal symmetry). This additional process of transporting 
angular momentum into the interior is provided by the separation of the sidewall 
boundary layers, formed following the impulsive start, and their roll-up into cyclonic 
cells in on the order of one rotation time (1/52) of the system. Horizontal viscous 
diffusion and Ekman pumping also provide mechanisms for spin-up, but for the 
parameter ranges considered in this study, these are secondary processes. Specifically, 
for spin-up in rectangular containers of depth H of the same order or larger than the 
short horizontal length of the container L, if (H2/v52)1/2 is greater than approximately 
10/52, then the advection of angular momentum into the interior by the cyclonic cells 
occurs on a faster time scale than Ekman pumping. Numerical computations of the 
two-dimensional Navier-Stokes equations qualitatively capture much of the dynamics 
of the flow for these cases. 

For spin-up at low R e  (< Re,), the experiments and the numerical computations 
of the limiting case of H + 00 show that the cyclones, locally, rotate faster than the 
container, and hence the spin-up of the entire system is essentially a local spin-down 
of the cyclonic cell regions, coupled with a spin-up of the initially stationary interior 
into an anticyclonic cell by the flanking cyclones via viscous shear. For spin-up with 
R e  2 Re,, the cyclones track into the interior and may undergo merger, forming a 
system with one cyclonic cell in the centre. This resultant cyclonic cell then spins 
down locally as the system approaches solid-body rotation. The cyclone-cyclone 
merger events appear to be very similar to mergers of isolated vortices; however, 
both the experiments and the numerics show that the close proximity of the sidewalls 
and the associated distribution of negative (anticyclonic) relative vorticity provide 
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FIGURE 15. Contours of i (a) and y j  ( b )  at times as indicated for Re = 8 x lo3 and f i h  = 2.28 
calculated with a grid of size 301 x 685 with 6 t  = 1.25 x lo-’. Contour levels are as determined in 
figure 6. 

further complications for the mergers. The critical Reynolds number for merger 
increases with increasing horizontal aspect ratio at a fixed vertical aspect ratio. It 
varies non-monotonically with increasing vertical aspect ratio at a fixed horizontal 
aspect ratio. In particular, Re, decreases sharply with increasing 6, for 6,, < 1, then 
jumps at 6,. = 1, and decreases at a lower rate for further increases in 6,. 
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